Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
SAGE Open Med ; 9: 20503121211002996, 2021.
Article in English | MEDLINE | ID: covidwho-1158190

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 has emerged as a new viral pandemic, causing Coronavirus disease 2019 (COVID-19) leading to a wide array of symptoms ranging from asymptomatic to severe respiratory failure. However, coagulation disorders have been found in some patients infected with SARS-CoV-2, leading to either a clotting disorder or hemorrhage. Several mechanisms attempt to explain the mechanism behind the pro-coagulant state seen with COVID-19 patients, including different receptor binding, cytokine storm, and direct viral endothelial damage. SARS-CoV-2 has also been recently found to bind to CLEC4M receptor, a receptor that participates in the clearance of von Willebrand Factor and Factor VIII. The competitive binding of SARS-CoV-2 to CLEC4M could lead to decreased clearance, and therefore a promotion of a pro-coagulative state; however, an experimental study needs to be done to prove such an association.

2.
Biology (Basel) ; 10(1)2020 Dec 22.
Article in English | MEDLINE | ID: covidwho-1000232

ABSTRACT

C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL